

Prepared by Dr R Gomalavalli, professor, ECE, SIETK

[L3][CO3]

[6M]

UNIT –II OSCILLATORS

1	a)	What is anOscillator?Explain the principle of operation of an oscillator.	[L2][CO1]	[6M]
	b)	Illustrate the Barkhausen criterion condition for oscillation with suitable diagram.	[L2][CO1]	[6M]
2	a)	Interpret the various types of oscillators.	[L3][CO1]	[6M]
	b)	Determine the frequency of oscillations when a RC phase shift oscillator		[6M]
		has R=100 k Ω , C=0.01 μ F and R _C = 2.2 K Ω .	[L3][CO4]	
3	a)	Determine the condition for sustained oscillations for an RC phase shift	[L3][CO2]	[6M]
	b)	Oscillator with necessary circuit diagrams.		[6M]
	b)	Design a RC phase shift oscillator to generate 5 KHz sine wave with 20V	[L3][C03]	
4	-)	peak to peak amplitude. Draw the designed circuit. Assume $h_{fe} = 150$.		
4	a)	Explain the working principle of Wein-bridge oscillator using BJT and	[L2][CO5]	[6M] [6M]
	1 \	derive its frequency expression for sustained oscillations.	[L2][CO4]	
	b)	In a Wein-bridge oscillator, if the value of R is $100 \text{ K}\Omega$, and frequency of	[][00.]	
_	``	oscillation is 10 KHz, estimate the value of capacitor C.		
5	a)	Compare RC phase shift oscillator and Wein-bridge oscillator.	[L2][CO2]	[6M]
	b)	Derive the generalized equation of a LC Oscillator with its circuit.	[L3][CO6]	[6M]
6	a)	Draw the circuit diagram of Hartley oscillator using BJT and derive the	[L3] [CO1]	[6M]
		expression for frequency of oscillations.		
	b)	A In a transistorized Hartley oscillator, the two inductances are 2 mH and 20 μ H	[L3][CO4]	
		while the frequency is to be changed from 950 KHz to 2050 KHz. Find the range		[6M]
		over which the capacitor is to be varied.		
7		Draw the circuit diagram of Colpitts oscillator using BJT and derive the	[L3][CO1]	[6M]
	a)	expression for frequency of oscillations.		
		Colpitts oscillator is designed with $C_1 = 100$ pF and $C_2 = 7500$ pF.The		
	b)	inductance is variable. Identify the range of inductance values, if the	[L2][CO4]	[6M]
	,	frequency of oscillation is to vary between 950 KHz to 2050 KHz.		
8	a)	Compare piezoelectric effect and inverse piezoelectric effect with a neat	[L2] [C06]	[4M]
		diagram		
	b)	Explain in detail about the crystal oscillator and derive the expression for	[L2][CO1]	
		its frequency of oscillation.		[8M]
9	a)	Summarize the difference between Hartley and Colpitts oscillators.	[L2][CO4]	[6M]
	b)	In the Colpitts oscillator, $C_1 = 0.2 \mu F$ and $C_2 = 0.02 \mu F$. If the frequency	[L3][CO4]	[6M]
		of oscillationis 10kHz, Examine the value of inductor		
1	a)	Summarize the difference between Colpitts and Crystal oscillators.	[L2][CO4]	[6M]
0	b)	Explain the concept of stability in Oscillators in detail.	[L2][CO6]	[6M]

UNIT –III OPERATIONAL AMPLIFIER

1	a) Explain the basic information and pin configuration of an op-ampb) List out the ideal characteristics of an operational amplifier.	[L2] [CO1] [L1][C03]	[6M] [6M]
2	a) Discuss the electrical characteristics of an op-amp in detail. b)What is level translator? Explain the necessity of level translator stage in	[L2][CO1]	[6M]
	cascading differential amplifiers.	[L2][CO2]	[6M]
3	a) Draw the equivalent circuit diagram of op-amp and derive the expression for gain of inverting amplifier.b)Design an inverting amplifier with gain A= 10	[L3][CO5] [L3][CO5]	[6M] [6M]
4	a)) Derive the voltage gain of non-inverting op-amp.	[L3][CO5]	[6M]
5	b) What is voltage follower? What are its features and applications?a) Differentiate inverting and noninverting op-amp.	[L1][CO1] [L2][CO1]	[6M] [6M]
U	b) Design a noninverting amplifier with gain A=21.	[L3][CO5]	[6M]
6	 a) Estimate the gain of a Differential amplifier b) Define the terms CMPR, common mode gain, differential mode gain 	[L4][CO2]	[6M]
7	b) Define the terms CMRR, common mode gain, differential mode gain.a) Explain DC characteristics of op-amp	[L1][CO2] [L2][CO3]	[6M]] [6M]
	b) What is frequency compensation and explain how the frequency response is varied with respect to Compensation network?	[L2][CO6]	[6M]
8	 a) Illustrate the following terms with neat diagram i)Input bias current ii)Input offset current b)Explain briefly i)virtual ground concept b)Thermal Drift 	[L3][CO1] [L2][CO1]	[6M] [6M]]
9	a)Draw and explain frequency response of practical op-amp	[L2][CO1]	[6M]
4.0	b)Define the terms drift,offset voltage,PSRR,offset current	[L1][CO2]	[6M]
10	c) a)Explain the term slew rate and illustrate the importance in op-amp circuits?	[L2][CO3]	[6M]
	d) b)An op-amp has a slew rate of $2V/\mu s$. What is the maximum frequency of an output sinusoidal its peak value of 5V at which the distortion sets in due to the slew rate limitation	[L1][CO4]	[6M]

UNIT –IV APPLICATIONS OF THE OP-AMP

1	a) Design and explain the operation of inverting summing amplifier. b) Design an inverting adder circuit using an op-amp to get the output expression as V_0 =-(0.1V ₁ +V ₂ +10V ₃), where V ₁ ,V ₂ and V ₃ are the inputs.	[L3][CO3] [L3][CO3]	[6M] [6M]
2	a) Design and explain the operation of non-inverting summing amplifier. b) The op-amp non-inverting summing circuit has the following parameters $V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V}, R = R_1 = 1 \text{ k}\Omega, R_f = 2 \text{ k}\Omega, V_1 = +2 \text{ V}, V_2 = -3 \text{ V},$ $V_{L} = +4 \text{ V}$. Determine the output voltage V	[L3][CO3] [L3][CO3]	[6M] [6M]
3	$V_3 = +4$ V. Determine the output voltage V_{o} a)Draw the circuit of a subtractor using op-amp and derive the	[L3][CO1]	[6M]
4	expression for voltage gain. b) Draw an op-amp circuit whose output is $V_0 = (V_3 + V_4) - (V_1 + V_2)$. a)Explain the operation of differentiator using op-amp with a neat circuit diagram.	[L3][CO1] [L3][CO5] [L3][CO1]	[6M] [6M] [6M]
	b)Draw the input-output waveforms and frequency response of differentiator.		
5	a)Explain the operation of integrator using op-amp with a neat circuit diagram.	[L3][CO5] [L3][CO1]	[6M] [6M]
6	b)Draw the input-output waveforms and frequency response of integrator.a) Explain sample and hold circuit using op-amp.	[L2][CO1]	[6M]
7	 b) Design a differentiator to differentiate an input signal that has f_{max}=100Hz. a)Draw a neat circuit of astable multivibrator using op-amp and explain operation with waveforms. 	[L3][CO5] [L2][CO2]	[6M] [6M]
	b)Define the duty cycle .Identify the percentage of duty cycle if $T_{on}=0.6$ msec $T_{off}=0.4$ msec	[L3][CO4]	[6M]
8	a)Derive the equation for frequency of oscillation of astable multivibrator using	[L3][CO4]	[6M]
	op-amp. b)Calculate the frequency of oscillation for an astable multivibrator having $R_2=10$ kohm, $R_1=8.6$ kohm, $R_f=100$ kohm and $C=0.01 \ \mu F$.	[L4][CO4]	[6M]
9	a)Explain the operation of monostable multivibrator using op-amp ,with a neat circuit and its waveforms	[L2][CO2]	[6M]
	b)Derive the equation for pulse width of the monostable multivibrator using	[L3][CO4]	[6M]
10	op-amp. Explain the operation of triangular wave generator using op-amp, with a neat circuit diagram and its waveforms.	[L2][CO3]	[12M]

UNIT –V

ACTIVE FILTERS AND CONVERTERS USING OP-AMP

1	a)Define active filter and give its characteristics.b)Explain the first order low pass butter worth filter with a neat circuit diagram.	[L4][CO2] [L2][CO2]	[6M] [6M]
2	a)Draw the frequency response of filters . b)Explain the first order high pass butter worth filter with a neat circuit diagram.	[L3][CO1] [L2][CO2]	[6M] [6M]
3	Design a lowpass filter at a cut-of frequency of 15.9kHz with passband gain of 1.5 and draw the frequency response.	[L3][CO3]	[12M]
4	Design a highpass filter at a cut-of frequency of 10kHz with passband gain 1.5 and draw the frequency response.	[L3][CO3]	[12M]
5	 a) Explain the weighted resistor DAC with a neat diagram. b)An 8-bit Analog to Digital converter has a supply voltage of +12 volts. Calculate: (i)The voltage step size for LSB. (ii) The value of analog input voltage for a digital output of 01001011. 	[L2][CO2] [L4][CO4]	[6M] [6M]
6	a) Explain in detail about R-2R DAC with a neat diagram. b).The basic step of a 9 bit DAC is 10.3 mV. If "000000000" represents 0 V. What output is produced if the input is "1011011111"?	[L2][CO3] [L1][CO4]	[6M] [6M]
7	a) Draw the circuit diagram of inverted R-2R DAC and explain its operation.	[L2][CO2]	[6M]
-	b) Design an inverted R-2R ladder DAC for digital input word 001.	[13][C04]	[6M]
8	a) Explain about the flash type ADC using op-amp.b) Summarize the truth table for a flash type opamp ADC using 8 by 3 priority encoder.	[L2][CO1] [L2][CO4]	[6M] [6M]
9	Draw the circuit diagram of Dual Slope ADC and explain its working with neat sketches	[L2][CO2]	[12M]
10	Discuss the parameters specifications of DAC/ADC.	[L2]][CO1]	[12M]